
Plasma Powder Welding

Plasma arc welding goes beyond the limits of general arc welding. Powder selected according to the improvement objectives is welded with outstanding separation resistance.

PPW is a surface modification technology created by Daido by integrating powder application technologies at optimal levels. Compared to general arc welding (TIG, coat arc), this plasma arc welding technique makes possible cladding by a layer with outstanding wear resistance, heat cracking resistance, and separation resistance, providing components long life spans even when used under harsh conditions.

Principles of the PPW System

A powder that serves as the filler materials is injected into a plasma arc with good heat concentration in an inert atmosphere to form a welded metal film (layer) on the treated object.

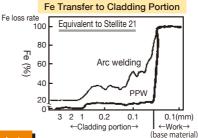
Cladding Alloy Powders

Туре		Cladding		Composition (%)						Properties Corrosion Wear resistance				
		HRC	Со	Si	Ni	Cr	W	Мо	Fe	С	Corrosion resistance	Hot work	Cold work	lmpact
	KCM1 (equiv. to Stellite 21)	30	Bal.	1.0	3	26	-	5.5	<1.5	0.25	0	0	0	0
Cobalt	KCW2 (equiv. to Stellite 6)	43	Bal.	1.0	-	30	4	_	<1.5	1.20	0	0	0	0
alloys	KCW5 (equiv. to Stellite 25)	25	Bal.	1.0	10	20	15	_	<1.5	0.08	0	0	0	0
	KCW3 (equiv. to Stellite 12)	47	Bal.	1.0	_	30	8	_	<1.5	1.50	0	0	0	0
Nickel alloys	NCS2 (equiv. to Colmonoy No. 6)	60	_	4.0	Bal.	15	-	B3.0	3.0	0.70	0	0	0	×
	NCS3 (equiv. to Colmonoy No. 5)	50	_	3.5	Bal.	12	-	B2.5	3.0	0.50	0	0	0	\triangle
	NCS4 (equiv. to Colmonoy No. 4)	40	-	3.0	Bal.	10	_	B2.0	3.0	0.30	0	0	0	\triangle
	R625 (equiv. to Inconel 625)	_	_	_	Bal.	21.5	_	9	_	≦0.10	0	0	0	\triangle
Powdered high-speed steel	DEX20	62	_	-	-	4	6.5	5	V3	1.30	\bigtriangleup	0	0	\triangle
	DEX40	63	8	_	_	4	6.5	5	V3	1.30	\bigtriangleup	0	0	\triangle
	DEX60	64	8	_	_	4	15	2	V5	1.70	\triangle	Ó	0	\triangle

Other powdered materials including hardened particles (NbC, WC) and heat resistant alloys (Inconel 718) are supported; please inquire.

Range of Possible Machining

Unit (mn								
\setminus	Round	Pipe stock		Ring & disc stock	Bar stock			
	Cladding exterior diameter	Cladding interior diameter	Cladding interior c	exterior/ liameter	Surface cladding	Cladding exterior diameter		
	φD	φID] - φOD	\$			φD		
Exterior diameter	<i>φ</i> D20~ <i>φ</i> D'1,100	\$\$\phi_D>\$	¢0D≦¢400	φID>φ40	<i>ф</i> 1,000	¢1,500		
Length	L 1,900	L 3,000	L 4,000	L1 1,800	_	L 1,200		
Mass	3,000	1,700	230		1,300	500		
Thickness	_	_	-	-	T500	-		


Other powdered materials including hardened particles (NbC, WC) and heat resistant alloys (Inconel 718) are supported; please inquire.

Features of PPW Treated Objects

- Welding is possible even on difficult-to-weld materials.
 Co-based and Ni-based alloy tool steels
- •WC, NbC, and other ultra-hard cladding 2. Two or more types of powder can be
- blended.3. Welding yields with cladding material on the work (base material) is high, reducing
- the amount of cladding material used. 4. Computer-based, fully-automated welding is possible, providing exterior quality with a stable bead.
- 5. Attenuation of the work (base material) metal is minimal.
- 6. Cladding metal structure is dense, making it possible to achieve high hardness.

(Equivalent to Stellite 21) PPW Gas welding (manual welding)

Comparison of Welding Methods

\smallsetminus	Exterior	Thermal impact range	Structure	Blending	Cladding uniformity	
PPW	Small variation	Small	Fine crystal grains	Yes	Excellent	
Arc welding	Medium variation	Large	Coarse crystal grains	No	Good	
Gas welding	Large variation	Large	Coarse crystal grains	No	Good	

Examples of PPW Treatment Effects on Hot and Warm Forging Products

Application/product	uct Work (base) Cladding Material (thickness examples)		Size	Effects	
Axle rollers	SNCM439	KCW2 (equiv. to Stellite 6) (t 1.5)	<l1000< td=""><td>2-4 times greater than earlier treatments</td></l1000<>	2-4 times greater than earlier treatments	
Piercing punches SKD61, DH71		KCM1, KCW2 (equiv. to Satellite 21, 6) (t 1.5)	Various	2-4 times greater than earlier treatments	
Piercing dies	SKD61	KCM1 (equiv. to Satellite 21) DEX20 (t 1.5)	ø60 × L400	2-4 times greater than earlier treatments	
Knockout pins	SKD61	KCM1 (equiv. to Satellite 21) (t 2.0)	ø20–ø60	2-4 times greater than earlier treatments	
Moving and fixed blades	SKD61	KCM1 (equiv. to Satellite 21) (t 3.0)	For materials ø20-ø60	4-6 times greater than earlier treatments	

We are available for consultations concerning work (base) materials, cladding materials (thickness), and other issues.